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Phase representation and its application in the analytical treatment of the theoretical sandpile
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In this paper we introduce a phase representation for sandpile models shown to display self-organized
criticality. We find that this phase representation is useful for analyzing these models and for character-
izing the evolution of the sandpile. By use of this approach we study the periodic orbits in a version of
the deterministic sandpile. The toppling number of each site in every orbit, the period of each orbit, and

the number of such orbits are exactly calculated.

PACS number(s): 64.60.—1i, 05.40.+j, 05.45.+b, 91.30.Px

Recently, the behaviors of extended dynamical systems
in the far-from-equilibrium state have stimulated much
attention and interest. Bak, Tang, and Wiesenfeld (BTW)
[1,2] found that such systems naturally evolve into a criti-
cal state without tuning any specific parameter such as
temperature. BTW define this phenomenon as self-
organized criticality (SOC). In BTW’s paper they intro-
duced a sandpile automaton to illustrate SOC. In such a
model, one at a time particles are stochastically dropped
onto one site of a two-dimensional sandpile. If the height
or gradient at a certain site exceeds the threshold value
assigned to the site, the site topples and the distribution
of particles is rearranged according to certain automaton
rules. It is found that this model displays SOC in long-
time evolution and the final statistically stable critical
state is independent of initial conditions. It is much more
exciting that this model exhibits the so-called 1/f noise
by which many phenomena such as sunspot activities,
traffic flow, earthquakes, the flow of sand in an hourglass,
and the flow of electric current through a resistor are
characterized. BTW’s concept and model shed much
light on the physical origin of the ubiquitous 1/f noise in
nature. Following BTW’s model, many variants of sand-
piles were studied mainly by numerical simulation [3-7].
On the other hand, some authors tried to consider
this problem in a more mathematical way. Dhar and
Rhamaswamy studied the general BTW-type automaton
of SOC and described the dynamics of the sandpile
using matrix algebra [8,9]. Wiesenfeld, Theiler, and
McNamara’s simulation and analysis showed that in a
deterministic sandpile automaton there exists some
periodic orbits whose periods are independent of initial
conditions and Dhar’s method proved to be a powerful
tool in the treatment of this kind of model [10].

In this Rapid Communication we introduce a phase
representation. We define some variables such as the
state phase and the vector of phase displacement and use
them to describe the sandpiles. In such a representation
the physical picture of the system is viewed from another
point and this can help us understand the sandpile and its
evolution more deeply. By use of this approach we stud-
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ied the periodic attractors in a sandpile and obtained
some exact results.

Since our approach is mainly based on Dhar’s formal-
ism, we firstly repeat some of his steps and secondly we
introduce our concepts and method.

Consider a set of N sites. Define I={1,2,...,N} as
the index number set. To each site i is assigned an in-
teger variable Z;, i €I. This model is called an Abelian
model (AM) and it is specified by two rules.

Adding a particle. Select a site i randomly and increase
Z; by 1, leaving other sites unchanged:

Z,—~Z+1,
Z,-Z; (j#i).

In the language of sandpiles we call this adding a particle
to Z;.

Toppling. The rule is specified by an N X N integer ma-
trix A and a set of N critical values Z,. (i =1,2,...,N).
When Z; > Z,, the site topples and it drops some parti-
cles to its neighbors and at the same time some particles
may leave the system. If at site i, the toppling occurs,

where A; satisfies
A; >0, (1)
A; <0, j#Fi, jEI )
and
N
> A;20, Viel. (3)
ji=1

Equation (3) ensures that there is no creation of particles
during the process and the particles can leave the system.
It is worth noting that the description of the system and
the rules are valid for sandpiles of any dimensions.

We call {Z;|i=1,2,...,N} a configuration of the sys-
tem and denote it as 3. Define TS to be the set of all pos-
sible configurations of the system. When a configuration
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v={Z;} satisfies Z,<Z,, Vi€I, we call this (vil) n=(n,,n,,...,ny) the vector of phase displace-
configuration stable. Define S to be the set of all stable ~ ment. When an n is specified ¢ is determined by Eq. (6),
configurations. Define N operators aq;, i =1,2,...,N namely, $=A"!-n. From Eq. (5) we can see that n;

For Yy E TS, a;¢ denotes the certain stable configuration
into which the system evolves when a particle is added to
site i. Dhar proved that [a;,a;]=0, Vi,j €. That means
that ¢; and a; commute with each other and this is the
reason why this model is called the Abelian model. Be-
cause the total number of elements in the set S is finite,
one can define the recurrent set

={y€ESla "=y, Im;EP} ,

where P is the set of positive integers. There is still
another important property to be noted [11]: for the
Abelian model,

R,=R, Vi€l .

This equation means that the recurrent set for every
specific site is the same.
Dhar derived that [9] for VY ER

uw I‘Ia Ul/} ,

where the prlmed product sign indicates the product over

all j7#i. We remove ¥ from both sides of the equation
and get
LN
Ile¢;"=1, Vierl. 4)
j=1
Dhar introduced phase ¢ and we can write

a;=exp(2mi¢;), VjEI In terms of ¢’s, Eq. (4) can be
written as
N
S Ayé;=n;, Vi€l (5)
j=1

where n; are some integers. Solving Eq. (5) we get

N
¢;=3 A"

i=1

Yynj, ViEI. 6)

We define the following.

(i) Z=(Z,Z,,...,Zy) the height vector. Z; stands
for the height of the site i, i.e., the number of particles at
site i.

(i) ¢=(¢,,d,, . . . , dx) the phase unit vector. ¢; stands
for the phase unit corresponding to the operator a; which
satisfies Eq. (4).

(iii) ®=Z-¢=N_,Z;¢, the state phase of the system
studied.

() 1=Z,4—Zy=(l},l,,...,1y). 1 stands for the
change between an initial and a final configuration, then
1-¢ is the difference of the state phase between the initial
and the final configuration.

(v) h=(h,h,, ..., hy) the addition vector. h; means
the added particles at site i from out of the system during
a process, then h-¢ is the phase flowing into the system
during a process.

(vi) s=(s{,s,,...,sy) the toppling vector. s; stands
for the number of topplings at site / during a process.

stands for the reduction of the state phase of the system
when there is a toppling at site i. That is the reason why
n is called the vector of phase displacement. In the pro-
cess of adding—toppling—>stable—adding - - -, we view
the action of adding a particle at site i as phase ¢; flowing
into the system and a toppling at site i as phase n; flowing
out of the system. In this picture we can characterize the
evolution of the system as the unceasing flowing of phase
into or out of the system.

The phase flowing out of the system during a process is
s-n. Hence

sn=h-¢—I-¢=(h—1)-¢ . (7)

Applying Eq. (6) and because of the arbitrary choice of n,
we get

h—I1=ATs, (8)

where A7 is the transposed matrix of A. Equation (8)
constructs a relationship among the three vectors h,l,s.

Now we come back to the recurrent set R defined be-
fore. Wiesenfeld, Theiler, and McNamara proved that
[10] all the periodic orbits generated by operator a; have
the same period T;. Based on this property we consider
an orbit of a;. After a period, the change of the state
phase of the system is zero, and we write

Ti¢z 2 su j . 9)

Applying Eq. (6) we write

N
TiE[A_ ij _] zsq 1 ’
j=1
namely,
Z(T 1y —si;)n;=0 . (10)
ji=1

As for arbitrary n Eq. (10) holds we get

s;=T,[A7"]; , Vj€EI. (11)
Thus we get a result: In any two orbits generated by
operator a;, Vi €I the toppling number of arbitrary site j
is just the same and is determined by Eq. (11). Conse-
quently the total number of topplings during one period
in two different orbits is the same.

Let G;; be the probability of toppling at site j when a
toppling occurred at site i. From Eq. (11) we write

S

G,.j=T# [a ;. (12)

Equation (12) is identical to Dhar’s result [9] and [A"l]ij
represents the correlation density between site i and j.
Because A;; is an integer matrix, [A —1]11 is a rational
matrix. Let [A™ 1] =N,;/D;;, where N;; and D;; are
prime to each other Let TO, be the least common multi-

ple of D;;,D;,...,D;y. Because s; is an integer the
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period T; must be a multiple of T, according to Eq. (11),
namely,

T,=m;Ty, m=12,.... (13)

On a two-dimensional square lattice, under the condi-
tions of free boundary, nearest-neighbor, and isotropic in-
teraction we do a numerical simulation in a lattice of
L XL with L=2,3,4. The free boundary condition
means that the heights of sandpiles out of the considered
region are always 0. The isotropic interaction means that
in an N-dimensional space lattice when a site topples it
drops an equal number of particles to its 2N nearest
neighbors. The simulation reveals that the real period for
the lattice is just the minimally possible period T,
i=1,2,...,N=LXL and the data agree with the data
obtained in Ref. [10]. Numerical simulation on a one-
dimensional lattice also gives the same result. By consid-
ering the symmetry of this kind of sandpile model we ar-
gue that for any N, the period T;, i =1,2,..., N equals
T,; defined above.

As the total number of configurations in R is detA [9],
we get the number of periodic orbits corresponding to
operator a;:

N _ detA

N="F
! Ti TOf

(14)

Summary. In this Rapid Communication we introduce
the phase representation to the treatment of theoretical
sandpiles. In this representation, we studied the periodic
orbits of a type of deterministic sandpile and exactly cal-
culated every site’s toppling number, the orbits’ periods,
and the number of the orbits. These results appear in
Egs. (11), (13), and (14). This shows that this method is
useful in the analysis of such problems. The results we
obtained give us more information about the sandpile and
a clearer picture of the sandpile’s evolution.

We thank Professor Tsung-han Lin and Professor E.-
Jiang Ding for helpful discussions and critical reading of
the manuscript.
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